
BAO Reconstruction Evolution Report

Table of Contents

1. Executive Summary
2. Evolution Overview
3. Reconstruction Quality Metrics
4. Baseline Algorithm Analysis
5. Best Evolved Algorithm Analysis
6. Evolution Improvements
7. Experiment Configuration
8. Appendix: Algorithm Code

Executive Summary

Here is an executive summary of the BAO reconstruction algorithm evolution experiment:

Executive Summary: Evolutionary Optimization of BAO Reconstruction

This experiment successfully demonstrated the power of evolutionary algorithms to enhance Baryon
Acoustic Oscillation (BAO) reconstruction, achieving a substantial 22.8% improvement in reconstruction
quality over standard baselines. Over the course of 721 hours and 1,165 generations, the system
evolved a highly effective algorithm that raised the mean cross-correlation coefficient ($r(k)$) in the
critical BAO range ($k \in [0.01, 0.5]$ h/Mpc) from 0.7526 to 0.9239. Most notably, the evolved
solution dramatically improved performance at smaller scales (higher k), where traditional methods
typically falter due to non-linear structure formation. For instance, at $k=0.1881$ h/Mpc, the
correlation improved by nearly 3.5%, significantly extending the range of reliable cosmological data
extraction.

The primary trade-off for this precision is computational cost, with the best-performing algorithm
requiring approximately 76 seconds per realization compared to the baseline's 9.7 seconds. However,
this 7x increase in runtime yields a scientifically critical gain in signal fidelity. The evolved approach
maintained near-perfect large-scale correlations ($r > 0.995$ for $k < 0.2$) while boosting the overall
mean correlation of the density field from 0.345 to 0.580. This suggests the algorithm has learned to
better model non-linear displacements rather than simply smoothing the density field, effectively

reversing gravitational evolution more accurately than standard Zeldovich approximation-based
methods.

For cosmological analysis, these results imply a potential reduction in statistical errors for distance
measurements derived from galaxy surveys. By recovering information at higher wavenumbers ($k >
0.15$ h/Mpc), the evolved algorithm effectively increases the useful volume of survey data. The
ability to push reconstruction validity deeper into the non-linear regime offers a pathway to tighter
constraints on Dark Energy parameters and the expansion history of the universe without requiring
additional observational time. While the increased computational demand is non-negligible, it remains
well within the feasible range for modern high-performance computing pipelines used in major surveys
like DESI or Euclid.

Evolution Overview

Metric Value

Duration 721.46 hours

Total Generations 1165

Programs Evaluated 1168

Successful Programs 901 (77.1%)

Best Found at Generation 1144

Initial Score 0.7526

Final Best Score 0.9239

Relative Improvement 22.8%

Evolution Progress

Generation | Best Score

-----------|------------

 0 | 0.752577

 106 | 0.769830

 172 | 0.818503

 246 | 0.842625

 312 | 0.846708

 379 | 0.859223

 442 | 0.868764

 508 | 0.871521

 571 | 0.879741

 634 | 0.216742

 701 | 0.882500

 775 | 0.876910

 845 | 0.884823

 936 | 0.883987

 1028 | 0.922489

 1137 | 0.874586

Reconstruction Quality Metrics

Metric Baseline Best Improvement

Combined Score 0.7526 0.9239 +0.1713

Mean r(k) BAO Range [0.01, 0.5] 0.7526 0.9239 +0.1713 (+22.8%)

Mean r(k) Large Scale [0.01, 0.2] 0.9881 0.9957 +0.0075

Mean Correlation 0.3450 0.5797 +0.2347

Max Degradation 0.0000 0.0000 +0.0000

Penalty Applied 0.0000 0.0000 +0.0000

Computation Time (s) 9.65 76.09 +66.44

Per-k Large-Scale r(k) Values

k (h/Mpc) Baseline r(k) Best r(k) Reference Improvement

0.0219 0.9995 0.9996 0.9994 +0.0001

0.0456 0.9984 0.9991 0.9983 +0.0007

0.0694 0.9973 0.9985 0.9972 +0.0012

0.0931 0.9964 0.9977 0.9964 +0.0013

k (h/Mpc) Baseline r(k) Best r(k) Reference Improvement

0.1169 0.9950 0.9965 0.9947 +0.0016

0.1406 0.9899 0.9951 0.9882 +0.0052

0.1644 0.9759 0.9916 0.9716 +0.0158

0.1881 0.9526 0.9870 0.9459 +0.0345

Tunable Parameters

The best algorithm uses the following tunable parameters, optimized via automatic differentiation:

Parameter Value Bounds Method

bias 2.315250 (0.80, 3.00) autodiff

init_R_perp 7.354290 (1.00, 15.00) autodiff

init_R_para 5.571760 (1.00, 15.00) autodiff

gamma_adv 0.961606 (0.00, 3.00) autodiff

gamma_I2 -3.550830 (-5.00, 1.00) autodiff

mix_coeff 2.420240 (0.00, 4.00) autodiff

hk_strength 5.345250 (-6.00, 6.00) autodiff

c0_threshold 0.560210 (0.05, 0.70) autodiff

c0_slope -1.437450 (-2.00, 2.00) autodiff

dewarp_ridge_pow -2.115290 (-6.00, -0.50) autodiff

Parameter Descriptions

bias : Galaxy bias parameter relating observed galaxy density to underlying matter density.
Higher values indicate stronger bias.
init_R_perp : Initial smoothing scale (Mpc/h) perpendicular to the line of sight. Controls

transverse smoothing of the density field.

init_R_para : Initial smoothing scale (Mpc/h) parallel to the line of sight. Controls radial
smoothing, accounting for redshift-space distortions.
gamma_adv : Advection correction coefficient. Controls the strength of the advective term s·∇δ in

the reconstruction.
gamma_I2 : Second invariant coefficient. Controls contribution of I₂ (related to shear) to the source

term.
mix_coeff : Mixing coefficient for blending different displacement field channels (primary

Zeldovich + corrections).
hk_strength : High-k regularization strength. Controls suppression of small-scale (high

wavenumber) modes to prevent noise amplification.
c0_threshold : Threshold parameter for adaptive correction. Determines where correction kicks in

based on local density.
c0_slope : Slope parameter controlling the rate of correction transition around the threshold.
dewarp_ridge_pow : Power-law exponent for dewarp ridge regularization. Controls scale-dependent

damping in iterative steps.

Baseline Algorithm Analysis

Scientific Interpretation of the Baseline BAO Reconstruction Algorithm

Core Approach The algorithm implements standard Zeldovich Reconstruction, a first-order Lagrangian
perturbation theory approach widely used in cosmology. It operates by estimating the displacement
field (Ψ) from the observed density field using the Zeldovich approximation, where
$\Psi(\mathbf{k}) \propto -i\mathbf{k}/k^2 \delta(\mathbf{k})$. The method attempts to reverse the
bulk flows caused by gravity by moving mass elements back toward their initial Lagrangian positions.
This specific implementation is a "paint-shift-paint" scheme, where the density field is treated as a
collection of particles on a grid, shifted by the calculated displacement, and then repainted to form the
reconstructed field.

Key Features and Physical Meaning The reconstruction process follows three distinct physical steps: 1.
Displacement Estimation: The code performs an FFT on the overdensity field and applies a Gaussian
smoothing kernel (smoothing_scale_R_s). This smoothing is physically critical; it suppresses small-scale
non-linearities (high k) where the Zeldovich approximation breaks down, ensuring the displacement
field is derived only from the linear, large-scale modes. 2. Particle Shifting: It generates a uniform grid
of "particles" and shifts them by the calculated displacement vector. This effectively reverses the
gravitational collapse. 3. Differential Density Calculation: The final reconstructed field is derived using
the difference between a shifted data field (delta_d) and a shifted random field (delta_s ,
approximated here by shifting a uniform grid of ones). This differential approach, $(\delta_d - \delta_s)
/ b$, is standard practice to remove the purely geometric distortions introduced by the shifting process
itself, isolating the recovered initial density signal.

Novel Elements While the physics is standard, the implementation utilizes JAX (jnp) for high-
performance computing. The use of jnp.meshgrid and vectorized operations in Shift and
CICPaint_Single (Cloud-in-Cell) indicates a focus on differentiability and GPU/TPU acceleration. The
CICPaint_Single function uses grid.at[...].add(...) , which is JAX's specific syntax for in-place

updates, crucial for handling the "scatter" operation where multiple particles contribute to the same grid
cell. The algorithm also exposes the smoothing scale and bias as tunable hyperparameters for an
evolutionary optimizer, allowing the reconstruction to adapt to specific simulation characteristics
automatically.

Strengths and Limitations * Strengths: The algorithm is computationally efficient (O(N log N) due to
FFTs) and mathematically robust for the linear regime. The inclusion of the shifted random field term
(delta_s) ensures that the reconstruction does not introduce artificial mode coupling due to the grid
distortions. The JAX implementation makes it highly parallelizable and differentiable. * Limitations: As
a first-order method, it does not account for higher-order Lagrangian perturbation terms (2LPT), limiting
its accuracy in recovering information from the quasi-linear regime. Furthermore, the "randoms" are
approximated by a uniform grid of ones rather than a true catalog of random particles with the same
survey geometry (mask/selection function), which assumes a periodic box simulation context rather
than observational survey data.

Best Evolved Algorithm Analysis

Scientific Interpretation of the Evolved BAO Reconstruction Algorithm

Core Approach: This algorithm employs a hybrid iterative displacement field reconstruction method,
rooted in the Zeldovich approximation but significantly augmented by higher-order Lagrangian
perturbation theory (LPT) terms and a multi-stage spectral filtering process. It operates in two distinct
phases: a primary bulk-flow removal step (standard reconstruction) followed by a sophisticated
"physics augmentation" phase that attempts to recover information lost to non-linear evolution using a
basis of tidal and density invariants.

Key Features: The reconstruction begins with a standard Zeldovich step, solving for the displacement
field Ψ using a smoothed density field and removing redshift-space distortions (RSD) via an
anisotropic kernel (solve_disp). The innovation lies in the subsequent steps: 1. Tensor Invariant
Augmentation: The algorithm computes the shear tensor invariants (I_1, I_2, I_3) of the initial
displacement field and uses them, along with an advection term ($\mathbf{\Psi} \cdot \nabla \delta$),
to construct a secondary displacement source. This mimics 2LPT (Second-order Lagrangian
Perturbation Theory) corrections but with free, evolved coefficients (gamma_adv , gamma_I2 , etc.) rather
than fixed theoretical values. 2. Spectral De-Warping (Stage A): A "Tri-Basis De-Warping" step attempts
to fit the high-k residual density field using a basis set composed of δ^2, $|\nabla \delta|^2$,
and tidal scalar s^2. This acts as a bias renormalization scheme, correcting for non-linear mode
coupling at smaller scales. 3. Coherence-Gated Fusion (Stage B): The final density field is constructed
by fusing the de-warped field with a set of tracers (log-density, non-linear density, scale-dependent bias

terms). This fusion is governed by a spectral coherence gate, which only allows the mixing of terms that
show strong cross-correlation with the reference field in specific k-bands.

Novel Elements: The most distinct departure from standard reconstruction is the differentiable, band-
wise spectral fusion. Standard methods usually apply a global smoothing kernel. This algorithm,
however, uses jax.lax.scan to iterate through specific wavenumber bands ($k \sim 0.2 - 0.6$ h/Mpc),
applying a Wiener-like filter that adaptively blends the reconstructed field with non-linear tracers based
on their local spectral coherence. Additionally, the explicit inclusion of a "Gram-Schmidt"
orthogonalization step between the primary and secondary displacement channels ensures that the
higher-order corrections do not re-introduce large-scale bulk flows already handled by the Zeldovich
step.

Strengths and Limitations: * Strengths: The algorithm is highly robust against small-scale noise due to
the coherence gating mechanism. By explicitly modeling non-linear terms (tidal forces, advection), it
likely recovers BAO signal in the "gray zone" ($k \approx 0.2-0.5$ h/Mpc) better than standard
smoothing. The "Hard Low-k Lock" ensures that the linear regime ($k < 0.2$), which is already well-
measured, is perfectly preserved, preventing the reconstruction from degrading large-scale information.
* Limitations: The computational complexity is significantly higher than standard reconstruction (76s vs
typical <10s) due to the multiple FFTs required for tensor invariants and the band-wise scanning loops.
Furthermore, the reliance on many tunable "evolved" parameters (e.g., dewarp_ridge_pow , c0_threshold)
implies the model might be over-fitted to the specific cosmology or simulation suite used during the
evolutionary optimization, potentially requiring re-tuning for different survey specifications.

Evolution Improvements

Here is a detailed analysis of the improvements made by the evolved BAO reconstruction algorithm
compared to the baseline.

1. Key Modifications

The baseline algorithm is a standard implementation of Zeldovich Reconstruction, which smooths the
density field, computes a displacement field using the linear Zeldovich approximation, and shifts
particles back.

The evolved algorithm transforms this into a Multi-Stage, Non-Linear Reconstruction Pipeline. The key
modifications are:

Anisotropic Smoothing: Instead of a single isotropic Gaussian smoothing scale (R_s), the
evolved code uses separate perpendicular ($R_\perp \approx 7.35$) and parallel ($R_\parallel
\approx 5.57$) smoothing scales.
Physics-Augmented Displacement: It introduces a second pass for the displacement field. It
calculates "invariants" of the deformation tensor (shear terms I_1, I_2, I_3) and an advection

term, mixing them into the displacement calculation.
Iterative "De-Warping" (Stage A): A post-reconstruction step that attempts to clean up the
reconstructed field by regressing it against non-linear basis functions (density squared, gradients,
tidal scalars) in specific k-bands.
Tracer Fusion (Stage B): A complex weighting scheme that blends the reconstructed field with
various "tracers" (log-density, non-linear density, scale-dependent bias terms) based on their
coherence with the signal in Fourier space.
High-k Refinement: Explicit logic to treat high-k (small scale) modes differently, applying
aggressive filtering and substitution where the reconstruction is known to be noisy.

2. Physical Justification

Does it make physical sense? Mostly Yes, though with high complexity.

Anisotropic Smoothing: This is physically well-motivated. Redshift Space Distortions (RSD)
elongate structures along the line of sight (the "Fingers of God" effect) and squash them on large
scales (Kaiser effect). Using different smoothing scales for parallel vs. perpendicular directions
accounts for this asymmetry, allowing the algorithm to recover information more effectively in
the presence of RSD.
Shear Invariants (I_2, I_3): Standard reconstruction assumes the displacement is purely the
gradient of a potential (irrotational). However, non-linear structure formation generates tidal
forces and shear. Including the invariants of the shear tensor (I_2 specifically relates to tidal
torque) attempts to correct for higher-order Lagrangian perturbation theory (2LPT) effects that
the standard Zeldovich approximation misses.
Advection Term: The term gamma_adv * adv represents the transport of density anomalies by the
bulk flow. Standard reconstruction moves particles; this term attempts to model the change in
the density contrast caused by that movement mathematically, effectively acting as a higher-
order correction to the continuity equation.
Scale-Dependent Bias: The inclusion of delta_sdbias_k acknowledges that galaxies (tracers) do
not trace dark matter perfectly linearly at all scales.

Critique: The "De-Warping" and "Fusion" stages act more like denoising filters or Wiener filters than
pure physical reconstruction. They rely on the correlation between non-linear terms and the noise to
subtract out mode-coupling effects. While mathematically effective for maximizing $r(k)$, they move
away from the pure dynamical restoration of particle trajectories.

3. Novel Techniques

Several innovative approaches appear in the evolved code:

Spectral "Band-Scanning" (Jax scan): The algorithm processes the power spectrum in distinct
bands (using _dewarp_scan and _fusion_scan). Instead of a global fit, it optimizes the cleaning
coefficients locally in k-space. This is highly sophisticated and allows the algorithm to adapt to
how noise properties change from large to small scales.

Coherence-Gated Mixing: The algorithm calculates the "coherence" (correlation coefficient)
between the reconstructed field and its various non-linear tracers on the fly. It uses sigmoid

gates to only allow mixing when the coherence is high. This prevents the algorithm from injecting
noise in regions where the non-linear models are poor predictors.
Gram-Schmidt Orthogonalization of Displacements: The code orthogonalizes the secondary
displacement field (s_2) against the primary one (s_1). This ensures that the "physics
augmentation" adds new information rather than just rescaling the linear Zeldovich term.

4. Trade-offs

Computation Time vs. Accuracy:
Baseline: 9.65s
Evolved: 76.09s (+66.44s)
The evolved algorithm is nearly 8x slower. This is a significant cost. However, for
cosmological surveys where data processing is done once, this cost is likely acceptable
given the massive gain in signal fidelity.

Complexity vs. Maintainability: The evolved code is drastically more complex. It moves from a
simple FFT-shift-IFFT procedure to a multi-stage pipeline involving tensor calculus, iterative
scanning, and dozens of tunable hyperparameters. Debugging this system or deriving analytic
covariance matrices for it would be extremely difficult.
Linearity vs. Non-Linearity: The baseline preserves the linear relationship between input and
output relatively well. The evolved algorithm introduces highly non-linear gating and thresholding.
This could potentially introduce subtle biases in the power spectrum amplitude or quadrupole
that would need careful calibration.

5. Scientific Validity and Generalization

Is it overfit? There is a moderate risk of overfitting. The algorithm has introduced a large number of
"magic numbers" (e.g., c0_threshold , mix_coeff , dewarp_ridge_pow , specific band centers [0.23,

0.30...]). * If these parameters were tuned on a specific simulation box at a specific redshift, they
might not perform as well on a survey with different shot noise levels, galaxy bias, or redshift. *
However, the structure of the solution (using shear invariants and anisotropic smoothing) is robust.

The r(k) Improvement: The improvement in $r(k)$ at high k (0.188 h/Mpc) is distinct: 0.9526 \to
0.9870. This is physically significant. In BAO analysis, the "damping" of the acoustic peak is dominated
by non-linear bulk flows. By recovering the correlation to nearly 0.99 up to $k=0.2$, the algorithm has
effectively undone almost all non-linear smearing relevant for BAO cosmology. This would translate
directly to tighter constraints on Dark Energy parameters (w_0, w_a).

Conclusion: The evolved algorithm represents a shift from "Dynamical Reconstruction" to "Hybrid
Dynamical-Statistical Reconstruction." It uses dynamics to move the mass, but then uses statistical
learning techniques (in the Fourier domain) to clean up the resulting field. It is a highly effective, albeit
computationally expensive, "super-resolution" technique for density fields.

Experiment Configuration

Setting Value

Number of Islands 5

Migration Interval 10 generations

Max Generations 10000

LLM Models Used gemini-3-pro-preview, gpt-5.2, gemini-3-flash-preview, o4-mini

Task Description

The algorithm evolves to solve BAO (Baryon Acoustic Oscillation) reconstruction: - Recover the initial
density field from evolved observations - Maximize cross-correlation r(k) in BAO range (k ~ 0.01-0.5
h/Mpc) - Preserve large-scale structure without degradation - Key constraint: r(k) at large scales must
not degrade from baseline

Appendix: Algorithm Code

Baseline Algorithm

EVOLVE-BLOCK-START

TUNABLE: smoothing_scale_R_s = 9.08926, bounds=(1.0, 30.0), method=autodiff

TUNABLE: bias = 1.02773, bounds=(1.0, 3.0), method=autodiff

def reconstruct(data: jnp.ndarray, smoothing_scale_R_s: float = 9.08926,

 bias: float = 1.02773, box_size: float = 1000.0) -> jnp.ndarray:

 """

 Performs 3D BAO reconstruction for dark matter density fields.

 Args:

 data: Input 3D density field (dark matter overdensity) as a NumPy array.

 The input is expected to be a cubic array.

 smoothing_scale_R_s: Gaussian smoothing scale in Mpc/h.

 The k-space density field delta_k is multiplied by

 exp(-k^2 * R_s^2 / 2) where k includes the 2π factor.

 This suppresses small-scale noise in the displacement field.

 If R_s <= 0, no smoothing is applied. Default is 10.0.

 bias: Bias factor for dark matter. Default is 1.02773.

 box_size: Box size in Mpc/h. Default is 1000.0.

 Returns:

 Reconstructed 3D density field as a NumPy array.

 The output array will have the same dtype as the input array.

 """

 if not isinstance(data, jnp.ndarray):

 raise TypeError("Input data must be a NumPy array.")

 if data.ndim != 3:

 raise ValueError("Input data must be a 3D array.")

 if not (data.shape[0] == data.shape[1] == data.shape[2]):

 raise ValueError("Input data must be a cubic 3D array.")

 N = data.shape[0]

 if N == 0:

 return jnp.array([], dtype=data.dtype).reshape(0, 0, 0)

 reconstructed_field = apply_reconstruction(data, smoothing_scale_R_s, bias, box_size)

 return reconstructed_field

def apply_reconstruction(density_field, smoothing_scale, bias, BoxSize):

 """Applies standard reconstruction to a density field.

 Standard reconstruction in cosmology is a technique used to sharpen the

 baryon acoustic oscillation (BAO) signal by removing non-linear effects

 of structure formation. It works by estimating the displacement field

 from the observed density field and then moving galaxies back to their

 initial positions.

 Args:

 density_field: 3D numpy array representing the density field

 smoothing_scale: smoothing scale in Mpc/h for the Gaussian filter

 bias: Bias factor for dark matter

 BoxSize: Box size in Mpc/h

 Returns:

 reconstructed_field: 3D numpy array of the reconstructed density field

 """

 # Get dimensions of the density field

 nx, ny, nz = density_field.shape

 # Convert density field to overdensity field

 overdensity = density_field - 1.0

 # FFT of the overdensity field

 delta_k = jnp.fft.fftn(overdensity)

 # Create k-space grid

 kx = jnp.fft.fftfreq(nx, 1/nx) * 2 * jnp.pi / BoxSize

 ky = jnp.fft.fftfreq(ny, 1/ny) * 2 * jnp.pi / BoxSize

 kz = jnp.fft.fftfreq(nz, 1/nz) * 2 * jnp.pi / BoxSize

 kx_grid, ky_grid, kz_grid = jnp.meshgrid(kx, ky, kz, indexing='ij')

 k_sq = kx_grid**2 + ky_grid**2 + kz_grid**2

 # Apply Gaussian smoothing

 smoothing_factor = jnp.exp(-0.5 * k_sq * smoothing_scale**2)

 # Avoid division by zero

 k_sq = k_sq.at[0, 0, 0].set(1.0)

 # Calculate displacement field in k-space

 # Using the Zeldovich approximation: Ψ(k) = -ik/k² δ(k)

 displacement_x_k = -1j * kx_grid / k_sq * delta_k * smoothing_factor / bias

 displacement_y_k = -1j * ky_grid / k_sq * delta_k * smoothing_factor / bias

 displacement_z_k = -1j * kz_grid / k_sq * delta_k * smoothing_factor / bias

 # Transform back to real space

 displacement_x = jnp.real(jnp.fft.ifftn(displacement_x_k))

 displacement_y = jnp.real(jnp.fft.ifftn(displacement_y_k))

 displacement_z = jnp.real(jnp.fft.ifftn(displacement_z_k))

 # Apply displacement to get reconstructed field

 reconstructed_field = apply_displacement(density_field.astype(jnp.float32),

 displacement_x.astype(jnp.float32),

 displacement_y.astype(jnp.float32),

 displacement_z.astype(jnp.float32),

 BoxSize,

 bias)

 return reconstructed_field

def apply_displacement(density_field, disp_x, disp_y, disp_z, BoxSize, bias):

 """Applies displacement field to the density field.

 Args:

 density_field: Original density field

 disp_x, disp_y, disp_z: Components of the displacement field

 BoxSize: Box size in Mpc/h

 bias: Bias factor for dark matter

 Returns:

 Reconstructed density field

 """

 nx, ny, nz = density_field.shape

 # Create grid particles

 H = BoxSize/nx

 X = jnp.arange(nx)*H

 Y = jnp.arange(ny)*H

 Z = jnp.arange(nz)*H

 Particle_grid = (jnp.array(jnp.meshgrid(X, Y, Z, indexing='ij')).reshape([3,

-1]).transpose()).astype(jnp.float32)

 # Shift particles

 Position_shifted = Shift(Particle_grid, disp_x, disp_y, disp_z, nx, BoxSize, nx * ny * nz)

 # Paint shifted particles onto grid using CIC implementation

 delta_d = CICPaint_Single(Position_shifted, density_field.reshape(-1), nx, BoxSize, nx * ny *

nz) - 1

 delta_s = CICPaint_Single(Position_shifted, jnp.ones(nx * ny * nz, dtype=jnp.float32), nx,

BoxSize, nx * ny * nz) - 1

 # Apply shift

 reconstructed_field = (delta_d - delta_s) / bias

 return reconstructed_field

def Shift(particle_positions, disp_x, disp_y, disp_z, nmesh, box_size, num_particles=None):

 """

 Optimized vectorized implementation of particle position shifting with displacement fields.

 Args:

 particle_positions: Array of particle positions, shape (num_particles, 3)

 disp_x, disp_y, disp_z: 3D displacement field arrays, shape (nmesh, nmesh, nmesh)

 nmesh: Grid size

 box_size: Box size in physical units

 num_particles: Number of particles

 Returns:

 shifted_positions: Array of shifted particle positions with periodic boundary conditions

 """

 # Grid spacing

 cell_size = box_size / nmesh

 # Get particle positions

 pos_x = particle_positions[:, 0]

 pos_y = particle_positions[:, 1]

 pos_z = particle_positions[:, 2]

 # Find grid cell indices for all particles at once (vectorized)

 ix = (pos_x / cell_size).astype(int) % nmesh

 iy = (pos_y / cell_size).astype(int) % nmesh

 iz = (pos_z / cell_size).astype(int) % nmesh

 # Get displacements at particle positions using advanced indexing

 disp_at_x = disp_x[ix, iy, iz]

 disp_at_y = disp_y[ix, iy, iz]

 disp_at_z = disp_z[ix, iy, iz]

 # Apply displacement to all particles at once

 new_x = pos_x + disp_at_x

 new_y = pos_y + disp_at_y

 new_z = pos_z + disp_at_z

 # Apply periodic boundary conditions (vectorized)

 new_x = jnp.mod(new_x, box_size)

 new_y = jnp.mod(new_y, box_size)

 new_z = jnp.mod(new_z, box_size)

 # Stack results

 shifted_positions = jnp.column_stack([new_x, new_y, new_z])

 return shifted_positions.astype(jnp.float32)

def CICPaint_Single(particle_positions, particle_values, nmesh, box_size, num_particles=None):

 """

 Optimized vectorized implementation of Cloud-In-Cell (CIC) painting.

 Assigns particle values to a grid using CIC interpolation.

 Args:

 particle_positions: Array of particle positions, shape (num_particles, 3)

 particle_values: Array of particle values, shape (num_particles,)

 nmesh: Grid size

 box_size: Box size in physical units

 num_particles: Number of particles

 Returns:

 grid: 3D grid with painted values, shape (nmesh, nmesh, nmesh)

 """

 # Initialize grid

 grid = jnp.zeros((nmesh, nmesh, nmesh), dtype=jnp.float32)

 # Grid spacing

 cell_size = box_size / nmesh

 # Get all particle positions at once

 pos_x = particle_positions[:, 0]

 pos_y = particle_positions[:, 1]

 pos_z = particle_positions[:, 2]

 # Convert to grid coordinates

 x_grid = pos_x / cell_size

 y_grid = pos_y / cell_size

 z_grid = pos_z / cell_size

 # Find lower corner indices for all particles

 ix0 = jnp.floor(x_grid).astype(int)

 iy0 = jnp.floor(y_grid).astype(int)

 iz0 = jnp.floor(z_grid).astype(int)

 # Calculate fractional distances from lower corner for all particles

 dx = x_grid - ix0

 dy = y_grid - iy0

 dz = z_grid - iz0

 # Process each of the 8 corners

 for di in range(2):

 for dj in range(2):

 for dk in range(2):

 # Calculate indices for this corner

 ix = (ix0 + di) % nmesh

 iy = (iy0 + dj) % nmesh

 iz = (iz0 + dk) % nmesh

 # Calculate CIC weights for all particles at once

 wx = dx if di == 1 else (1 - dx)

 wy = dy if dj == 1 else (1 - dy)

 wz = dz if dk == 1 else (1 - dz)

 weights = wx * wy * wz

 # Add contributions to grid using np.add.at

 # This handles multiple particles contributing to the same grid point

 grid = grid.at[ix, iy, iz].add(particle_values * weights)

 return grid

EVOLVE-BLOCK-END

Best Evolved Algorithm

EVOLVE-BLOCK-START

TUNABLE: bias = 2.31525, bounds=(0.8, 3.0), method=autodiff

TUNABLE: init_R_perp = 7.35429, bounds=(1.0, 15.0), method=autodiff

TUNABLE: init_R_para = 5.57176, bounds=(1.0, 15.0), method=autodiff

TUNABLE: gamma_adv = 0.961606, bounds=(0.0, 3.0), method=autodiff

TUNABLE: gamma_I2 = -3.55083, bounds=(-5.0, 1.0), method=autodiff

TUNABLE: mix_coeff = 2.42024, bounds=(0.0, 4.0), method=autodiff

TUNABLE: hk_strength = 5.34525, bounds=(-6.0, 6.0), method=autodiff

TUNABLE: c0_threshold = 0.56021, bounds=(0.05, 0.7), method=autodiff

TUNABLE: c0_slope = -1.43745, bounds=(-2.0, 2.0), method=autodiff

TUNABLE: dewarp_ridge_pow = -2.11529, bounds=(-6.0, -0.5), method=autodiff

def _fftn_batched(x):

 return jnp.fft.fftn(x, axes=(-3, -2, -1))

def _ifftn_batched(x):

 return jnp.fft.ifftn(x, axes=(-3, -2, -1))

def _compute_tri_invariants(s_x, s_y, s_z, kx_grid, ky_grid, kz_grid):

 sx_k = jnp.fft.fftn(s_x)

 sy_k = jnp.fft.fftn(s_y)

 sz_k = jnp.fft.fftn(s_z)

 grad_sx = jnp.real(_ifftn_batched(jnp.stack([1j * kx_grid * sx_k,

 1j * ky_grid * sx_k,

 1j * kz_grid * sx_k], axis=0)))

 grad_sy = jnp.real(_ifftn_batched(jnp.stack([1j * kx_grid * sy_k,

 1j * ky_grid * sy_k,

 1j * kz_grid * sy_k], axis=0)))

 grad_sz = jnp.real(_ifftn_batched(jnp.stack([1j * kx_grid * sz_k,

 1j * ky_grid * sz_k,

 1j * kz_grid * sz_k], axis=0)))

 T_xx, T_xy, T_xz = grad_sx[0], grad_sx[1], grad_sx[2]

 T_yx, T_yy, T_yz = grad_sy[0], grad_sy[1], grad_sy[2]

 T_zx, T_zy, T_zz = grad_sz[0], grad_sz[1], grad_sz[2]

 I1 = T_xx + T_yy + T_zz

 Tr_T_sq = (T_xx**2 + T_xy*T_yx + T_xz*T_zx +

 T_yx*T_xy + T_yy**2 + T_yz*T_zy +

 T_zx*T_xz + T_zy*T_yz + T_zz**2)

 I2 = 0.5 * (I1**2 - Tr_T_sq)

 I3 = (T_xx * (T_yy * T_zz - T_yz * T_zy) -

 T_xy * (T_yx * T_zz - T_yz * T_zx) +

 T_xz * (T_yx * T_zy - T_yy * T_zx))

 return I1, I2, I3

def _compute_tidal_invariant(d1, kx, ky, kz, k_sq_safe):

 d1_k = jnp.fft.fftn(d1)

 H_stack_k = jnp.stack([

 -(kx**2 / k_sq_safe) * d1_k,

 -(ky**2 / k_sq_safe) * d1_k,

 -(kz**2 / k_sq_safe) * d1_k,

 -(kx*ky / k_sq_safe) * d1_k,

 -(kx*kz / k_sq_safe) * d1_k,

 -(ky*kz / k_sq_safe) * d1_k

], axis=0)

 H = jnp.real(_ifftn_batched(H_stack_k))

 Hxx, Hyy, Hzz = H[0], H[1], H[2]

 Hxy, Hxz, Hyz = H[3], H[4], H[5]

 sum_sq = (Hxx**2 + Hyy**2 + Hzz**2 + 2*(Hxy**2 + Hxz**2 + Hyz**2))

 s2 = sum_sq - (1.0/3.0) * (d1**2)

 return s2

def reconstruct(

 data: jnp.ndarray,

 smoothing_scale_R_s: float = 6.96604,

 bias: float = 2.31525,

 box_size: float = 1000.0,

 init_R_perp: float = 7.35429,

 init_R_para: float = 5.57176,

 gamma_adv: float = 0.961606,

 gamma_I2: float = -3.55083,

 mix_coeff: float = 2.42024,

 hk_strength: float = 5.34525,

 c0_threshold: float = 0.56021,

 c0_slope: float = -1.43745,

 dewarp_ridge_pow: float = -2.11529,

) -> jnp.ndarray:

 n = data.shape[0]

 overd = data - 1.0

 # Fixed parameters

 gamma_div = 2.0

 gamma_I3 = 5.0

 stab_scale = 1.12

 guard_k = 0.01

 c_s2 = 0.12

 # Grid setup

 k1d = 2 * jnp.pi * jnp.fft.fftfreq(n, d=box_size / n)

 kx, ky, kz = jnp.meshgrid(k1d, k1d, k1d, indexing='ij')

 k_perp_sq, k_par_sq = kx**2 + ky**2, kz**2

 k_sq = k_perp_sq + k_par_sq

 k_sq_safe = jnp.where(k_sq == 0.0, 1.0, k_sq)

 k_mag = jnp.sqrt(k_sq)

 H = box_size / n

 k_nyq = jnp.pi / H

 def kernel(Rp, Rl):

 arg = jnp.sqrt(k_perp_sq * Rp**2 + 1e-24) + jnp.sqrt(k_par_sq * Rl**2 + 1e-24)

 return jnp.exp(-0.5 * arg)

 def solve_disp(delta_k, Rp, Rl, eff_bias):

 fac = (-1j) * delta_k * kernel(Rp, Rl) / (eff_bias * k_sq_safe)

 s_vec = jnp.real(_ifftn_batched(jnp.stack([kx * fac, ky * fac, kz * fac], axis=0)))

 return s_vec[0], s_vec[1], s_vec[2]

 # --- Pass 1: Standard Zeldovich ---

 overd_k = jnp.fft.fftn(overd)

 s0x, s0y, s0z = solve_disp(overd_k, init_R_perp, init_R_para, bias)

 rec0 = _apply_differentiable_displacement(data.astype(jnp.float32), s0x, s0y, s0z, box_size,

bias)

 # --- Physics Augmentation ---

 delta_res = rec0 - 1.0

 I1, I2, I3 = _compute_tri_invariants(s0x, s0y, s0z, kx, ky, kz)

 I2c = I2 - jnp.mean(I2)

 I3c = I3 - jnp.mean(I3)

 dr_k = jnp.fft.fftn(jnp.arcsinh(delta_res))

 grad_res = jnp.real(_ifftn_batched(jnp.stack([1j * kx * dr_k, 1j * ky * dr_k, 1j * kz *

dr_k], axis=0)))

 adv = s0x * grad_res[0] + s0y * grad_res[1] + s0z * grad_res[2]

 # Tunable source composition (including advection)

 src1 = (delta_res + gamma_adv * adv + gamma_div * I1 +

 gamma_I2 * I2c + gamma_I3 * I3c)

 beta = jnp.maximum(stab_scale, 1e-6)

 src1_stab = jnp.arcsinh(beta * src1) / beta

 s1x, s1y, s1z = solve_disp(jnp.fft.fftn(src1_stab), init_R_perp * 0.05, init_R_para * 0.05,

bias)

 # Secondary Channel: Tidal

 src2_stab = jnp.arcsinh(beta * 2.0 * I2c) / beta

 fac2 = 1j * jnp.fft.fftn(src2_stab) / k_sq_safe

 s2_vec = jnp.real(_ifftn_batched(jnp.stack([kx * fac2, ky * fac2, kz * fac2], axis=0)))

 s2x, s2y, s2z = s2_vec[0], s2_vec[1], s2_vec[2]

 # Gram-Schmidt Orthogonalization (s2 vs s1)

 w_hp = 1.0 / (1.0 + jnp.exp(-(k_mag - guard_k) / 0.12))

 w_hp = jnp.where(k_sq == 0.0, 0.0, w_hp)

 def apply_hp(v): return jnp.real(jnp.fft.ifftn(jnp.fft.fftn(v) * w_hp))

 s1f = [apply_hp(v) for v in (s1x, s1y, s1z)]

 # Use higher power for s2 to isolate smaller scales

 def apply_hp2(v): return jnp.real(jnp.fft.ifftn(jnp.fft.fftn(v) * w_hp**2))

 s2f = [apply_hp2(v) for v in (s2x, s2y, s2z)]

 dot_11 = jnp.mean(s1f[0]**2 + s1f[1]**2 + s1f[2]**2) + 1e-12

 dot_21 = jnp.mean(s2f[0]*s1f[0] + s2f[1]*s1f[1] + s2f[2]*s1f[2])

 proj_21 = dot_21 / dot_11

 s2o = [s2f[i] - proj_21 * s1f[i] for i in range(3)]

 mix_val = mix_coeff * (1.0 - 0.1 * jnp.tanh(I2c))

 fx = s0x + mix_val * (s1f[0] + c_s2 * s2o[0])

 fy = s0y + mix_val * (s1f[1] + c_s2 * s2o[1])

 fz = s0z + mix_val * (s1f[2] + c_s2 * s2o[2])

 # E-mode Projection & Deconvolution

 Fk = _fftn_batched(jnp.stack([fx, fy, fz], axis=0))

 div_F = kx * Fk[0] + ky * Fk[1] + kz * Fk[2]

 E_k = jnp.stack([kx * div_F / k_sq_safe, ky * div_F / k_sq_safe, kz * div_F / k_sq_safe],

axis=0)

 E_k = jnp.where(k_sq == 0.0, 0.0, E_k)

 sinc_k = (jnp.sinc(kx * H / (2*jnp.pi)) * jnp.sinc(ky * H / (2*jnp.pi)) * jnp.sinc(kz * H /

(2*jnp.pi)))**2

 taper = jnp.exp(-jnp.power(k_mag / (0.685 * k_nyq + 1e-9), 8.0))

 clean = jnp.where(k_sq == 0.0, 1.0, taper / jnp.where(sinc_k == 0.0, 1.0, sinc_k))

 disp_f = jnp.real(_ifftn_batched(E_k * clean))

 rec_final = _apply_differentiable_displacement(data.astype(jnp.float32), disp_f[0],

disp_f[1], disp_f[2], box_size, bias)

 # --- High-k Refinement ---

 delta_base_k = jnp.fft.fftn(rec_final - 1.0) * clean

 delta_base_k = jnp.where(k_sq == 0.0, 0.0, delta_base_k)

 # Windowing

 w_hk_soft = (jax.nn.sigmoid((k_mag - 0.22) / 0.02)) ** 6

 w_hi = jnp.exp(-jnp.power(k_mag / (0.85 * k_nyq + 1e-9), 6.0))

 w_hk = jnp.where(k_mag <= 0.2, 0.0, w_hk_soft * w_hi)

 w_hk = jnp.where(k_sq == 0.0, 0.0, w_hk)

 aux_filter = taper / jnp.sqrt(jnp.where(sinc_k==0, 1.0, sinc_k))

 # --- Stage A: Tri-Basis De-Warping with Tunable Ridge ---

 d1 = jnp.arcsinh(beta * (rec_final - 1.0)) / beta

 d1 = d1 - jnp.mean(d1)

 # B1: Density^2

 b1_k = jnp.fft.fftn(d1**2 - jnp.mean(d1**2)) * aux_filter

 # B2: Grad^2

 d1_k_full = jnp.fft.fftn(d1)

 g_vec = jnp.real(_ifftn_batched(jnp.stack([1j*kx*d1_k_full, 1j*ky*d1_k_full,

1j*kz*d1_k_full], axis=0)))

 g2 = jnp.sum(g_vec**2, axis=0)

 b2_k = jnp.fft.fftn(g2 - jnp.mean(g2)) * aux_filter

 # B3: Tidal Scalar

 s2_field = _compute_tidal_invariant(d1, kx, ky, kz, k_sq_safe)

 b3_k = jnp.fft.fftn(s2_field - jnp.mean(s2_field)) * aux_filter

 band_centers = jnp.array([0.23, 0.30, 0.38, 0.48, 0.62], dtype=k_mag.dtype)

 band_sigma = jnp.array(0.075, dtype=k_mag.dtype)

 def _dewarp_scan(carry, kc):

 num_acc, den_acc = carry

 wb = w_hk * jnp.exp(-0.5 * jnp.square((k_mag - kc) / (band_sigma + 1e-6)))

 wb = jnp.where(k_sq == 0.0, 0.0, wb)

 # 3x3 System Construction

 bases = [b1_k, b2_k, b3_k]

 M = jnp.zeros((3, 3))

 T = jnp.zeros(3)

 # Unrolled construction

 for i in range(3):

 T = T.at[i].set(jnp.sum(wb * jnp.real(delta_base_k * jnp.conj(bases[i]))))

 for j in range(3):

 M = M.at[i, j].set(jnp.sum(wb * jnp.real(bases[i] * jnp.conj(bases[j]))))

 # Tunable Regularization

 ridge = (10.0**dewarp_ridge_pow) * (jnp.trace(M) + 1e-12)

 M = M + ridge * jnp.eye(3)

 coeffs = jnp.linalg.solve(M, T)

 delta_fit = coeffs[0]*b1_k + coeffs[1]*b2_k + coeffs[2]*b3_k

 return (num_acc + wb * delta_fit, den_acc + wb), None

 init_dw = (jnp.zeros_like(delta_base_k), jnp.zeros_like(k_mag))

 (num_dw, den_dw), _ = jax.lax.scan(_dewarp_scan, init_dw, band_centers)

 delta2_k = num_dw / (den_dw + 1e-12)

 delta2_k = jnp.where(k_sq == 0.0, 0.0, delta2_k)

 # Global Gating

 num_coh = jnp.sum(w_hk * jnp.real(delta_base_k * jnp.conj(delta2_k)))

 den_coh = jnp.sqrt(jnp.sum(w_hk * jnp.abs(delta_base_k)**2) * jnp.sum(w_hk *

jnp.abs(delta2_k)**2) + 1e-12)

 coh_2 = num_coh / (den_coh + 1e-12)

 ratio = jnp.sqrt(jnp.sum(w_hk * jnp.abs(delta2_k)**2)) / (jnp.sqrt(jnp.sum(w_hk *

jnp.abs(delta_base_k)**2)) + 1e-12)

 gate = jax.nn.sigmoid(10.0 * (coh_2 - 0.10)) * jax.nn.sigmoid(6.0 * (1.0 - ratio))

 delta_ref_k = delta_base_k - (w_hk * gate) * delta2_k

 delta_ref_k = jnp.where(k_sq == 0.0, 0.0, delta_ref_k)

 # --- Stage B: Fusion with K-Dependent Gating ---

 # Prepare tracers

 Dk = _fftn_batched(disp_f)

 delta_div_k = (-bias) * (1j * (kx * Dk[0] + ky * Dk[1] + kz * Dk[2])) * aux_filter

 logrho = jnp.log(jax.nn.softplus(rec_final) + 1e-6)

 delta_log_k = jnp.fft.fftn(logrho - jnp.mean(logrho)) * aux_filter

 dens_nl = jnp.arcsinh(beta * (rec_final - 1.0)) / beta

 delta_nl_k = jnp.fft.fftn(dens_nl - jnp.mean(dens_nl)) * aux_filter

 I3_src = jnp.arcsinh(beta * I3c) / beta

 delta_i3_k = jnp.fft.fftn(I3_src - jnp.mean(I3_src)) * aux_filter

 s0k = _fftn_batched(jnp.stack([s0x, s0y, s0z], axis=0))

 delta_div0_k = (-bias) * (1j * (kx * s0k[0] + ky * s0k[1] + kz * s0k[2])) * aux_filter

 # Scale dependent bias tracer

 bias_eff = jnp.maximum(bias * (1.0 - 0.15 * k_sq), 0.2)

 W_alt = jnp.exp(-0.5 * (jnp.power(k_perp_sq * init_R_perp**2 + 1e-24, 0.675) +

 jnp.power(k_par_sq * init_R_para**2 + 1e-24, 0.675)))

 delta_sdbias_k = (bias / bias_eff) * overd_k * W_alt * aux_filter

 tracers = [delta_div_k, delta_log_k, delta_nl_k, delta_i3_k, delta_div0_k, delta_sdbias_k]

 a_sig = jnp.array(10.0, dtype=k_mag.dtype)

 def _fusion_scan(carry, kc):

 num_acc, den_acc, conf_acc = carry

 wb = w_hk * jnp.exp(-0.5 * jnp.square((k_mag - kc) / (band_sigma + 1e-6)))

 wb = jnp.where(k_sq == 0.0, 0.0, wb)

 # Adaptive Threshold

 c0_eff = c0_threshold + c0_slope * (kc - 0.35)

 hybrid = jnp.zeros_like(delta_ref_k)

 w_sum = jnp.zeros_like(kc)

 for t_k in tracers:

 num = jnp.sum(wb * delta_ref_k * jnp.conj(t_k))

 den = jnp.sum(wb * jnp.abs(t_k)**2) + 1e-12

 coeff = num / den

 pred = coeff * t_k

 # Real coherence for strict correlation

 num_coh = jnp.sum(wb * jnp.real(delta_ref_k * jnp.conj(pred)))

 den_coh = jnp.sqrt(jnp.sum(wb * jnp.abs(delta_ref_k)**2) * jnp.sum(wb *

jnp.abs(pred)**2) + 1e-12)

 coh = num_coh / (den_coh + 1e-12)

 w = jax.nn.sigmoid(a_sig * (coh - c0_eff))

 hybrid = hybrid + w * pred

 w_sum = w_sum + w

 hybrid = hybrid / (w_sum + 1e-6)

 # Wiener Blend

 Pxx = jnp.sum(wb * jnp.abs(delta_ref_k)**2)

 Pyy = jnp.sum(wb * jnp.abs(hybrid)**2)

 Pxy = jnp.sum(wb * jnp.real(delta_ref_k * jnp.conj(hybrid)))

 denom = (Pxx + Pyy - 2.0*Pxy) + 1e-12

 wx = (Pyy - Pxy) / denom

 wy = (Pxx - Pxy) / denom

 coh_band = Pxy / (jnp.sqrt(Pxx*Pyy + 1e-12) + 1e-12)

 gate_band = jax.nn.sigmoid(8.0 * (coh_band - 0.20))

 # Apply gate

 wx = gate_band * wx + (1.0 - gate_band) * 1.0

 wy = gate_band * wy * jax.nn.sigmoid(4.0 * (coh_band - 0.20))

 band_est = wx * delta_ref_k + wy * hybrid

 return (num_acc + wb * band_est, den_acc + wb, conf_acc + wb * jnp.clip(coh_band, 0.0,

1.0)), None

 init_fus = (jnp.zeros_like(delta_ref_k), jnp.zeros_like(k_mag), jnp.zeros_like(k_mag))

 (num_fus, den_fus, conf_fus), _ = jax.lax.scan(_fusion_scan, init_fus, band_centers)

 est_k = num_fus / (den_fus + 1e-12)

 conf_k = conf_fus / (den_fus + 1e-12)

 eta = jax.nn.sigmoid(hk_strength)

 damp = jax.nn.softplus(hk_strength)

 trust = w_hk * conf_k**2

 delta_fused_k = delta_ref_k + (eta * trust) * (est_k - delta_ref_k)

 delta_fused_k = delta_fused_k * jnp.exp(-damp * w_hk * (1.0 - conf_k)**2)

 delta_fused_k = jnp.where(k_sq == 0.0, 0.0, delta_fused_k)

 # --- Hard Low-k Lock ---

 final_k = jnp.where(k_mag <= 0.2, delta_base_k, delta_fused_k)

 final_k = jnp.where(k_sq == 0.0, 0.0, final_k)

 return (jnp.real(jnp.fft.ifftn(final_k)) + 1.0).astype(data.dtype)

def _get_interpolated_displacement(pos, dx, dy, dz, nmesh, box):

 cell = box/nmesh

 x, y, z = pos[:,0]/cell, pos[:,1]/cell, pos[:,2]/cell

 ix, iy, iz = jnp.floor(x).astype(int)%nmesh, jnp.floor(y).astype(int)%nmesh,

jnp.floor(z).astype(int)%nmesh

 fx, fy, fz = x - jnp.floor(x), y - jnp.floor(y), z - jnp.floor(z)

 ox, oy, oz = jnp.zeros_like(fx), jnp.zeros_like(fy), jnp.zeros_like(fz)

 for di in range(2):

 wx = jnp.where(di, fx, 1-fx)

 for dj in range(2):

 wy = jnp.where(dj, fy, 1-fy)

 for dk in range(2):

 wz = jnp.where(dk, fz, 1-fz)

 w = wx*wy*wz

 ix0, iy0, iz0 = (ix+di)%nmesh, (iy+dj)%nmesh, (iz+dk)%nmesh

 ox += dx[ix0, iy0, iz0] * w

 oy += dy[ix0, iy0, iz0] * w

 oz += dz[ix0, iy0, iz0] * w

 return ox, oy, oz

def _differentiable_shift(pos, dx, dy, dz, nmesh, box):

 sx, sy, sz = _get_interpolated_displacement(pos, dx, dy, dz, nmesh, box)

 return jnp.mod(pos + jnp.stack([sx, sy, sz], axis=-1), box).astype(jnp.float32)

def _differentiable_paint(pos, vals, nmesh, box):

 grid = jnp.zeros((nmesh, nmesh, nmesh), dtype=jnp.float32)

 cell = box/nmesh

 x, y, z = pos[:,0]/cell, pos[:,1]/cell, pos[:,2]/cell

 ix0, iy0, iz0 = jnp.floor(x).astype(int), jnp.floor(y).astype(int), jnp.floor(z).astype(int)

 dx, dy, dz = x-ix0, y-iy0, z-iz0

 for di in range(2):

 wx = jnp.where(di, dx, 1-dx)

 for dj in range(2):

 wy = jnp.where(dj, dy, 1-dy)

 for dk in range(2):

 wz = jnp.where(dk, dz, 1-dz)

 w = wx*wy*wz

 grid = grid.at[(ix0+di)%nmesh, (iy0+dj)%nmesh, (iz0+dk)%nmesh].add(vals*w)

 return grid

def _apply_differentiable_displacement(dens, dx, dy, dz, box, bias):

 n = dens.shape[0]

 H = box/n

 coords = jnp.stack(jnp.meshgrid(jnp.arange(n)*H, jnp.arange(n)*H, jnp.arange(n)*H,

indexing='ij'),

 axis=-1).reshape(-1, 3).astype(jnp.float32)

 pos2 = _differentiable_shift(coords, dx, dy, dz, n, box)

 overd = dens.reshape(-1) - 1.0

 grid_d = _differentiable_paint(pos2, overd, n, box)

 grid_u = _differentiable_paint(pos2, jnp.ones_like(overd), n, box) - 1.0

 return (grid_d - grid_u)/bias + 1.0

EVOLVE-BLOCK-END

This report was automatically generated using LLM-assisted analysis.

