

LDL tSZ Prediction Evolution Report

Table of Contents

1. [Executive Summary](#)
2. [Evolution Overview](#)
3. [Model Performance Metrics](#)
4. [Baseline Model Analysis](#)
5. [Best Evolved Model Analysis](#)
6. [Evolution Improvements](#)
7. [Experiment Configuration](#)
8. [Appendix: Model Code](#)

Executive Summary

Here is an executive summary of the LDL model evolution experiment:

Performance Breakthroughs in tSZ Prediction This experiment successfully evolved Lagrangian Deep Learning (LDL) models to predict the thermal Sunyaev-Zeldovich (tSZ) effect from dark matter simulations, achieving a significant leap in predictive accuracy. Over the course of 233 generations, the evolutionary process improved the mean cross-correlation coefficient ($r(k)$) from a baseline of 0.9414 to 0.9792, representing a 4.0% improvement in fidelity across all scales. Crucially, the evolved model demonstrated vastly improved stability, reducing the standard deviation of $r(k)$ by nearly 80% (from 0.0309 to 0.0063). This indicates that the new architecture is not only more accurate on average but significantly more robust and consistent across different cosmological realizations. The reduction in validation loss was substantial across all test simulations, with the most dramatic improvement seen in simulation CV_1, where loss dropped by over 67%.

Architectural Robustness and Generalization The evolutionary search prioritized models that generalize better to unseen cosmological parameters. While the baseline model struggled with high variance in validation loss (ranging from 0.24 to 0.67), the evolved architecture tightened this spread considerably, achieving a mean validation loss of 0.2723 compared to the baseline's 0.4902. Although there was a negligible dip in transfer function accuracy, the massive gains in cross-correlation and large-scale agreement suggest the model has learned a more physically motivated mapping between the dark matter field and gas pressure profiles. The ability to maintain high accuracy on large scales

$(\$r=0.9980\$)$ while significantly improving small-scale details is a hallmark of a successful LDL optimization.

Implications for CMB Science These results have direct implications for the analysis of Cosmic Microwave Background (CMB) experiments. The tSZ effect is a primary probe for galaxy clusters, and accurate modeling of the tSZ signal is essential for constraining cosmological parameters like σ_8 and Ω_m . The evolved LDL model offers a computationally efficient alternative to full hydrodynamic simulations without sacrificing the precision required for next-generation surveys. By providing a highly accurate emulator that connects dark matter halos to hot gas pressure with nearly 98% correlation, this model enables faster, more reliable parameter inference pipelines, potentially reducing systematic errors in cosmological constraints derived from cluster abundance and tSZ power spectrum analyses.

Evolution Overview

Metric	Value
Duration	25.85 hours
Total Generations	233
Programs Evaluated	236
Successful Programs	131 (55.5%)
Best Found at Generation	222
Initial $r(k)$ Score	0.9414
Final Best $r(k)$ Score	0.9792
Relative Improvement	4.0%

Evolution Progress

61		0.140562
72		0.794660
84		0.963784
101		0.623844
118		0.956790
133		0.945092
153		0.575680
165		0.961506
180		0.968822
197		0.973897
209		0.979054
219		0.938943

Model Performance Metrics

Metric	Baseline	Best	Improvement
Mean r(k) All Scales	0.9414	0.9792	+0.0378 (+4.0%)
Std r(k)	0.0309	0.0063	-0.0246
Large-Scale Cross-Corr	0.9953	0.9980	+0.0026
Transfer Function Acc	0.9319	0.9306	-0.0014

Training & Validation

Metric	Baseline	Best	Change
Training Loss	0.3715	0.1483	-0.2232
Mean Validation Loss	0.4902	0.2723	-0.2178
Success Rate	100.00%	100.00%	-

Per-Simulation Validation Loss

Simulation	Baseline	Best	Change
CV_1	0.6044	0.1972	-0.4072

Simulation	Baseline	Best	Change
CV_2	0.4474	0.2406	-0.2069
CV_3	0.6665	0.5396	-0.1269
CV_4	0.2424	0.1120	-0.1303

Baseline Model Analysis

Based on the provided code and physical context, here is the scientific analysis of the baseline Lagrangian Deep Learning (LDL) model:

Architecture The model is a hybrid physical-neural network that operates in the Lagrangian frame. It consists of an iterative displacement module (`Displacement`) followed by a Eulerian mapping and a bias model (`LDL`). The core architecture uses `Nstep` layers, where each layer updates particle positions $\$X\$$ based on the local density field. Inside each step, the model computes the overdensity $\$\\delta\$$, applies a non-linear power-law transformation ($\$\\delta^{\\gamma}\$$), transforms to Fourier space, applies a learnable band-pass filter (Gaussian + power law), computes the gradient of the potential to find displacement vectors, and finally updates particle positions. The final output is generated by painting the displaced particles to a mesh and applying a parameterized "baryon bias" function: $\$F = \\text{ReLU}(b_1 \\delta^{\\mu} + b_0)\$$.

Key Features The model relies heavily on differentiable physics operators (FastPM) to enforce translational and rotational symmetry. Key mathematical operations include:

1. **Non-linear Density Transformation:** The term $\$\\delta^{\\gamma}\$$ allows the model to reweight high-density regions (halos) versus voids before computing displacements, effectively mimicking non-linear gravitational collapse or feedback mechanisms.

2. **Spectral Filtering:** The filter $\$-e^{-k^2/k_l^2} e^{-k_h^2/k^2} k^n\$$ acts as a learnable band-pass filter. This allows the network to select specific scales relevant for tSZ physics (e.g., cluster scales) while suppressing noise (high $\$k\$$) or irrelevant large-scale modes (low $\$k\$$).

3. **Baryon Bias Mapping:** The final transformation $\$F = \\text{ReLU}(b_1 \\delta^{\\mu} + b_0)\$$ is a phenomenological model connecting dark matter density to electron pressure, where the ReLU ensures physical positivity of pressure.

Innovation Unlike standard Convolutional Neural Networks (CNNs) that operate on fixed grids, this LDL approach is innovative because it respects the underlying Lagrangian dynamics of structure formation. By learning displacements rather than voxel values directly, the model effectively learns a "pseudo-time-evolution" that concentrates resolution where matter collapses (galaxy clusters), which is critical for the tSZ effect. Furthermore, the integration of the `smoothing` function in the loss calculation ($\$k^{-n} + 1\$$) explicitly prioritizes large-scale agreement, ensuring the model captures the correct power spectrum behavior before refining small-scale details.

Strengths and Limitations * **Strengths:** The model is highly interpretable; parameters like k_l , k_h directly correspond to physical scales, and γ , μ relate to polytropic indices or density contrasts. The high cross-correlation ($r > 0.99$ on large scales) suggests it successfully captures the linear bias and large-scale distribution of gas pressure. * **Limitations:** The current filter design is isotropic, potentially limiting its ability to model filamentary structures or anisotropic feedback (e.g., AGN jets). Additionally, the baryon bias model is a local, deterministic function of density; it lacks stochasticity and non-local dependencies (like temperature dispersion or shock history) that might be necessary to capture the full complexity of the tSZ effect in the most turbulent cluster cores.

Best Evolved Model Analysis

Here is a scientific analysis of the evolved Lagrangian Deep Learning (LDL) model:

Architecture The model employs a hybrid Lagrangian-Eulerian architecture. It begins with a multi-step `Displacement` operator that iteratively updates dark matter particle positions. In each step, particles are painted to a mesh to compute a density field, which is transformed via a log-stabilized nonlinearity and filtered through a compensated bandpass kernel to generate displacement potentials. After the displacement phase, the particles are painted to a final density mesh (δ). The baryon physics module then constructs the electron pressure field (P_e) using a multiplicative ansatz $P_e \propto n_e \times T_{\text{eff}}$, where electron density n_e is a power-law of the dark matter density, and effective temperature T_{eff} combines a virial term and a shock-heating term.

Key Features The model integrates two distinct physical regimes. First, the **Virial Temperature** is modeled using a "Screened Potential" approach ($\phi_k \propto \delta_k / (k^2 + k_s^2)$), where k_s acts as a learned screening scale, effectively solving a modified Poisson equation that suppresses long-range gravitational heating. Second, the **Gated Shock Temperature** captures heating from structure formation. It combines an isotropic gradient term ($\nabla \phi$) and an anisotropic tidal shear term (s^2), weighted by a learned mixing parameter (w_{shear}). Crucially, this kinetic term is modulated by a "Compression Gate" ($(1 + \text{ReLU}(\delta))^{0.5}$), which dynamically amplifies heating in high-density, collapsing regions while suppressing it in voids.

Innovation The primary innovation is the **Hybrid Thermo-Virial formulation** with "parameter hijacking." The evolutionary process optimized the parameter space by repurposing unused slots from the displacement loop to drive complex baryon physics (e.g., screening scales and shear smoothing lengths) without increasing the total parameter count. Furthermore, the decoupling of smoothing scales for the gradient term ($R_s \text{shock}$) and the shear term ($R_s \text{shear}$) allows the model to treat isotropic shock fronts and anisotropic tidal forces as distinct physical processes with different characteristic length scales, a nuance often missed in simpler models.

Strengths and Limitations * **Strengths:** The model achieves high accuracy (Cross-Correlation > 0.99 on large scales) by physically grounding the temperature model. The use of a screened potential prevents unphysical heating from large-scale modes, while the compression gate correctly localizes

shock heating to clusters. The compensated bandpass filter in the displacement engine ensures numerical stability by managing power at both $k \rightarrow 0$ and high- k regimes. * **Limitations:** The reliance on a static power-law mapping for electron density ($n_e \propto (1+\delta)^\mu$) may struggle to capture feedback processes that eject gas from halos (AGN feedback), potentially overestimating pressure in cluster cores. Additionally, the "hijacking" of parameters, while efficient, creates a rigid coupling between the number of displacement steps and the available complexity of the baryon model.

Evolution Improvements

Here is a detailed analysis of the improvements made by the evolved LDL model compared to the baseline.

1. Architectural Changes

The evolved model represents a significant departure from the baseline's simple "black box" approach, moving towards a physics-informed hybrid architecture.

- **Displacement Operator Refinement:**
 - **Baseline:** Used a generic double-Gaussian filter with a power-law tilt (k^n) and a simple power-law density transformation (δ^γ).
 - **Evolved:** Adopts a **Compensated Bandpass Filter** without the tilt parameter (n), ensuring numerical stability. It replaces the power-law density transform with a **Log-Stabilized Transformation** ($\log((1+\delta)^\gamma + 1)$). This prevents explosive gradients in high-density regions, a common issue in N-body displacement fields.
- **Baryon Model Overhaul (The Core Improvement):**
 - **Baseline:** A simple heuristic mapping: $F = \text{ReLU}(b_1 \delta^\mu + b_0)$. This assumes gas pressure perfectly traces dark matter density, which is physically incorrect for the tSZ effect (which depends on temperature *and* density).
 - **Evolved:** Implements a **Hybrid Thermo-Virial Model**. It explicitly models electron density (n_e) and effective temperature (T_{eff}) separately.
 - $n_e \propto (1+\delta)^\mu$
 - $T_{\text{eff}} \approx T_{\text{virial}} \times T_{\text{shock}}$
 - T_{virial} is modeled via a screened potential (solving a Poisson-like equation).
 - T_{shock} is modeled using a "Compression Gate" that combines isotropic gradients and anisotropic tidal shear.
- **Parameter Hijacking:** The evolved model cleverly repurposes unused parameter slots from the Displacement operator (specifically the removed 'n' tilt parameter) to feed the complex baryon

model without increasing the total parameter count passed by the optimizer.

2. Physical Justification

The changes are highly physically motivated, explaining the dramatic drop in loss (from 0.49 to 0.27).

- **tSZ Physics:** The tSZ signal is proportional to electron pressure $P_e = n_e k_B T_e$.
 - The **Baseline** tried to map DM density directly to Pressure ($P \propto \rho^\alpha$). This fails because gas in clusters is shock-heated (high T) and supported by virial pressure, not just density.
 - The **Evolved Model** explicitly constructs $P_e \approx n_e \times T$.
- **Virial Screening:** The term `InvScreen = 1.0 / (k**2 + k_s**2)` effectively solves a screened Poisson equation. This mimics the physical reality where the gravitational potential well determines the virial temperature of the gas, but the potential is screened on larger scales (Debye-like screening in a cosmological context).
- **Shock Heating & Tidal Shear:** The inclusion of `grad_sq` (bulk flow gradients) and `s2` (tidal shear) captures the complex dynamics of structure formation. Gas heats up not just because it is dense, but because it is *collapsing* (compression gate) and experiencing shear flows during filament formation. This is crucial for predicting tSZ signal in filaments and cluster outskirts.

3. Novel Techniques

- **Compression Gating:** The term `gate = (1.0 + ReLU(delta)) ** 0.5` acts as a physical attention mechanism. It forces the model to pay attention to shock heating terms (gradients and shear) primarily in regions of high density (collapsing structures), while ignoring them in voids. This mimics the physical generation of entropy shocks during structure collapse.
- **Compensated Loss Smoothing:** The new smoothing kernel `(k^-n + 1) / (1 + 0.1*k^n)` is a sophisticated improvement over the baseline. It boosts large-scale signal (where tSZ is strong) but includes a denominator term to prevent the loss from being completely dominated by cosmic variance at the largest scales (the "zero mode" problem).
- **Log-Stabilized Source Term:** In the displacement field, using $\log((1+\delta)^\gamma + 1)$ instead of pure power law is a numerical innovation that likely stabilized the training, allowing the optimizer to find a deeper minimum without diverging on high-density peaks.

4. Trade-offs

- **Complexity vs. Interpretability:** The evolved model is significantly more complex to implement. However, it is *more* interpretable physically. We can now point to specific terms representing "virial temperature" or "shear heating," whereas the baseline was just abstract coefficients.
- **Computational Cost:** The evolved model requires multiple FFTs per step (for potential, gradients, and shear tensors) compared to the baseline. This increases the FLOPs per forward pass. However, given the massive reduction in loss (-44%), the convergence speed likely offsets the per-step cost.

- **Parameter Efficiency:** By "hijacking" unused slots, the model maintained the same interface complexity for the optimizer, a clever trade-off to increase expressivity without refactoring the optimization loop.

5. Generalization

The improvements are highly likely to generalize well to other simulations (as evidenced by the consistent loss reduction across CV_1 through CV_4).

- **Robustness:** The standard deviation of $\$r(k)$ dropped from 0.0309 to 0.0063. This indicates the evolved model is not overfitting to specific realizations but has learned a robust physical mapping.
- **Physical Basis:** Because the model approximates actual hydrodynamical equations (Virial theorem, shock heating), it is less likely to "hallucinate" structures compared to a pure black-box neural network. It is learning the *physics* of the baryon-dark matter connection, not just memorizing the dataset.

Conclusion: The evolved LDL model is a superior architecture that transitions from a mathematical curve-fitting exercise to a physics-informed simulation. By explicitly modeling the thermodynamic components of the tSZ effect (density \times temperature) and capturing the non-local effects of gravity (virial screening) and structure formation (shocks), it achieves a state-of-the-art improvement in predictive accuracy.

Experiment Configuration

Setting	Value
Number of Islands	5
Migration Interval	10 generations
Max Generations	10000
LLM Models Used	gemini-2.5-pro, gemini-3-pro-preview, gpt-5, gemini-2.5-flash, o4-mini

Task Description

The model evolves to predict the thermal Sunyaev-Zeldovich (tSZ) effect: - Input: Dark matter particle positions from CAMELS simulations - Output: Electron pressure field ($n_e \times T$) - Primary metric: Cross-

correlation $r(k)$ averaged over all scales - Physics: Gas cooling/heating, shock heating, AGN/stellar feedback

Appendix: Algorithm Code

Baseline Algorithm

```
# EVOLVE-BLOCK-START

@autooperator('param->X1')
def Displacement(param, X, pm, Nstep):
    """
    Lagrangian displacement operator.
    Moves particles according to learned displacement fields.

    EVOLVABLE COMPONENTS:
    1. The filter design in Fourier space (currently Gaussian + power law)
    2. The nonlinear transformation of density (currently  $\delta^\gamma$ )
    3. The number and structure of displacement steps
    """
    # Normalization constant for overdensity
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    for i in range(Nstep):
        # Move particles across MPI ranks
        layout = fastpm.decompose(X, pm)
        xl = fastpm.exchange(X, layout)
        delta = fac * fastpm.paint(xl, 1.0, None, pm)

        # Extract parameters for this layer
        alpha = linalg.take(param, 5*i, axis=0)
        gamma = linalg.take(param, 5*i+1, axis=0)
        kh = linalg.take(param, 5*i+2, axis=0)
        kl = linalg.take(param, 5*i+3, axis=0)
        n = linalg.take(param, 5*i+4, axis=0)

        # Apply nonlinear transformation:  $\delta^\gamma$ 
        # EVOLVABLE: This could be replaced with other transformations
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, vmad_eval(delta, lambda x: x.shape))
        delta = (delta + 1e-8) ** gamma

        # Fourier transform
        deltak = fastpm.r2c(delta)

        # Design Fourier space filter
        # EVOLVABLE: Current design is double Gaussian with power law
        # Filter =  $-\exp(-k^2/kl^2) * \exp(-kh^2/k^2) * k^n$ 
```

```

Filter = Literal(pm.create(type='complex', value=1).apply(
    lambda k, v: k.normp(2, zeremode=1e-8) ** 0.5))

kh = mpi.allbcast(kh, comm=pm.comm)
kh = linalg.broadcast_to(kh, vmad_eval(Filter, lambda x: x.shape))
kl = mpi.allbcast(kl, comm=pm.comm)
kl = linalg.broadcast_to(kl, vmad_eval(Filter, lambda x: x.shape))
n = mpi.allbcast(n, comm=pm.comm)
n = linalg.broadcast_to(n, vmad_eval(Filter, lambda x: x.shape))

# Apply filter design
Filter = - unary.exp(-Filter**2 / kl**2) * unary.exp(-kh**2 / Filter**2) * Filter**n
Filter = compensate2factor(Filter)

p = complex_mul(deltak, Filter)

# Compute gradient of potential (displacement field)
r1 = []
for d in range(pm.ndim):
    dx1_c = fastpm.apply_transfer(p, fastpm.fourier_space_neg_gradient(d, pm, order=1))
    dx1_r = fastpm.c2r(dx1_c)
    dx1l = fastpm.readout(dx1_r, xl, None)
    dx1 = fastpm.gather(dx1l, layout)
    r1.append(dx1)

# Scale and apply displacement
S = linalg.stack(r1, axis=-1)
alpha = mpi.allbcast(alpha, comm=pm.comm)
alpha = linalg.broadcast_to(alpha, vmad_eval(S, lambda x: x.shape))
S = S * alpha

X = X + S

return X

@autooperator('param->F')
def LDL(param, X, pm, Nstep, baryon=True):
    """
    Main LDL model combining displacement and baryon bias.

    EVOLVABLE COMPONENTS:
    1. The baryon bias transformation (currently power law + linear + ReLU)
    2. How displacement output is processed
    """
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    # Apply Lagrangian displacement
    X = Displacement(param, X, pm, Nstep)

    # Paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        # Extract baryon bias parameters
        mu = linalg.take(param, 5*Nstep, axis=0)

```

```

b1 = linalg.take(param, 5*Nstep+1, axis=0)
b0 = linalg.take(param, 5*Nstep+2, axis=0)

mu = mpi.allbcast(mu, comm=pm.comm)
mu = linalg.broadcast_to(mu, vmad_eval(delta, lambda x: x.shape))
b1 = mpi.allbcast(b1, comm=pm.comm)
b1 = linalg.broadcast_to(b1, vmad_eval(delta, lambda x: x.shape))
b0 = mpi.allbcast(b0, comm=pm.comm)
b0 = linalg.broadcast_to(b0, vmad_eval(delta, lambda x: x.shape))

# EVOLVABLE: Baryon field transformation
# Current: F = ReLU(b1 * delta^mu + b0)
# Could evolve to different activation functions or transformations
F = ReLU(b1 * (delta + 1e-8) ** mu + b0)
else:
    F = delta

return F


def smoothing(n):
    """
    Smoothing kernel for loss function.
    Weights different scales in Fourier space.

    EVOLVABLE: The weighting scheme could be modified
    """
    def kernel(k, v):
        kk = sum(ki ** 2 for ki in k)
        kk = kk ** 0.5
        mask = kk == 0
        kk[mask] = 1
        # Current: b = v * (k^(-n) + 1)
        # Emphasizes large scales when n > 0
        b = v * (kk**(-n) + 1.)
        b[mask] = v[mask]
        return b
    return kernel


@autooperator('param->residue')
def smoothed_residue(param, X, pm, Nstep, target, n, baryon=True):
    """
    Compute smoothed residue between prediction and target.

    EVOLVABLE COMPONENTS:
    1. The smoothing strategy
    2. How residue is computed (could add perceptual loss, etc.)
    """
    # Get model prediction
    F = LDL(param, X, pm, Nstep, baryon=baryon)

    # Compute residue
    residue = F - target

    # Apply smoothing in Fourier space
    # EVOLVABLE: Could use different smoothing strategies
    Filter = pm.create(type='complex', value=1).apply(smoothing(n=n))

```

```

residuek = fastpm.r2c(residue)
residuek = residuek * Filter
residue = fastpm.c2r(residuek)

return residue

@autooperator('residue->loss')
def lossfunc(residue, mask, comm=MPI.COMM_WORLD, L1=True):
    """
    Loss function with train/val/test masking.

    EVOLVABLE: Could evolve to multi-scale loss, perceptual loss, etc.
    """
    residue = unary.absolute(residue)
    loss = masking(residue, mask)
    Npixel = np.sum(mask)

    if L1:
        loss = linalg.sum(loss)
    else:
        loss = linalg.sum(loss**2)

    loss = mpi.allreduce(loss, comm=comm)
    Npixel = mpi.allreduce(Npixel, comm=comm)
    loss = loss / Npixel
    return loss

# EVOLVE-BLOCK-END

```

Best Evolved Algorithm

```

# EVOLVE-BLOCK-START

@autooperator('param->X1')
def Displacement(param, X, pm, Nstep):
    """
    Lagrangian displacement operator.
    Moves particles according to learned displacement fields.

    OPTIMIZED: Uses the simplified filter design (removed 'n' tilt parameter)
    from the high-performance inspiration model. This ensures numerical stability
    and guarantees parameter slot availability for the baryon model.
    """
    EPS = 1e-8
    # Normalization factor for density
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    # Pre-compute k-norm for filter construction
    K = Literal(pm.create(type='complex', value=1).apply(

```

```

        lambda k, v: k.normp(2, zeremode=EPS) ** 0.5
    )))
for i in range(Nstep):
    # 1. Paint current particles to mesh
    layout = fastpm.decompose(X, pm)
    xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(xl, 1.0, None, pm)

    # 2. Extract Parameters (skipping index 4, 9... for hijacking)
    alpha = linalg.take(param, 5*i+0, axis=0)
    gamma = linalg.take(param, 5*i+1, axis=0)
    kh    = linalg.take(param, 5*i+2, axis=0)
    kl    = linalg.take(param, 5*i+3, axis=0)
    # param 5*i+4 is intentionally unused here

    # 3. Nonlinear Source Term
    # Log-stabilized density transformation: log((1+d)^gamma + 1)
    gamma = mpi.allbcast(gamma, comm=pm.comm)
    gamma = linalg.broadcast_to(gamma, vmad_eval(delta, lambda x: x.shape))
    source = unary.log((delta + EPS) ** gamma + 1.0)
    source_k = fastpm.r2c(source)

    # 4. Construct Filter (Compensated Bandpass - No Tilt)
    kh = mpi.allbcast(kh, comm=pm.comm)
    kh = linalg.broadcast_to(kh, vmad_eval(K, lambda x: x.shape))
    kl = mpi.allbcast(kl, comm=pm.comm)
    kl = linalg.broadcast_to(kl, vmad_eval(K, lambda x: x.shape))

    # Robust filter form: -(1 - exp(-k^2/kh^2)) * exp(-k^2/kl^2)
    Filter = - unary.exp(-K**2 / (kl**2 + EPS)) * (1.0 - unary.exp(-K**2 / (kh**2 + EPS)))
    Filter = compensate2factor(Filter)

    # 5. Apply Transfer and Compute Displacement
    pot_k = complex_mul(source_k, Filter)

    r1 = []
    for d in range(pm.ndim):
        # Displacement is gradient of potential
        disp_k = fastpm.apply_transfer(pot_k, fastpm.fourier_space_neg_gradient(d, pm,
order=1))
        disp_r = fastpm.c2r(disp_k)
        disp_l = fastpm.readout(disp_r, xl, None)
        disp_p = fastpm.gather(disp_l, layout)
        r1.append(disp_p)

    S = linalg.stack(r1, axis=-1)

    # 6. Update Positions
    alpha = mpi.allbcast(alpha, comm=pm.comm)
    alpha = linalg.broadcast_to(alpha, vmad_eval(S, lambda x: x.shape))
    X = X + S * alpha

return X

@autooperator('param->F')
def LDL(param, X, pm, Nstep, baryon=True):

```

```

"""
Hybrid Thermo-Virial LDL Model.

Combines the robust 'Screened Potential' virial temperature from the
Current model with the 'Compression Gated' shock model from the Inspiration
model.

Model: P_e = b_calib * n_e * T_eff
n_e = (1 + delta)^mu
T_eff = T_virial * T_shock_gated
"""

EPS = 1e-8
fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

# 1. Evolve Dark Matter Structure
X = Displacement(param, X, pm, Nstep)

# 2. Compute Density Field
layout = fastpm.decompose(X, pm)
Xl = fastpm.exchange(X, layout)
delta = fac * fastpm.paint(Xl, 1., None, pm)

if baryon:
    # --- Parameter Extraction ---
    # Standard baryon parameters
    mu = linalg.take(param, 5*Nstep+0, axis=0)
    b_calib = linalg.take(param, 5*Nstep+1, axis=0)
    b_shock = linalg.take(param, 5*Nstep+2, axis=0)

    # Hijacked parameters from unused 'n' slots in Displacement
    # Slot 1 (Step 0): Virial Screening (k_s)
    p_ks = linalg.take(param, 4, axis=0)
    # Slot 2 (Last Step): Shear smoothing scale (R_s_shear)
    last_n_idx = 5*(Nstep-1)+4
    p_rs_shear = linalg.take(param, last_n_idx, axis=0)
    # Slot 3 (Step 1 or fallback to last): Shock smoothing (R_s_shock) & shear weight
    (w_shear)
        combo_idx = 9 if Nstep > 1 else last_n_idx
        p_combo_shock = linalg.take(param, combo_idx, axis=0)

    # Broadcast
    bcast_params = [mu, b_calib, b_shock, p_ks, p_rs_shear, p_combo_shock]
    mu, b_calib, b_shock, p_ks, p_rs_shear, p_combo_shock = [
        mpi.allbcast(p, comm=pm.comm) for p in bcast_params
    ]

    # --- Physical mappings ---
    k_s = 0.5 + 4.5 / (1.0 + unary.exp(-p_ks)) # Virial screening scale
    R_s_shear = (0.02 + 0.10 / (1.0 + unary.exp(-p_rs_shear))) * pm.BoxSize[0] # Shear
    smoothing
    R_s_shock = (0.02 + 0.10 / (1.0 + unary.exp(-p_combo_shock))) * pm.BoxSize[0] # Shock
    smoothing
    w_shear = 1.0 / (1.0 + unary.exp(p_combo_shock)) # Shear weight (anti-correlated with
    R_s_shock)

    # Broadcast to field shapes
    mu_f = linalg.broadcast_to(mu, vmad_eval(delta, lambda x: x.shape))
    b_calib_f = linalg.broadcast_to(b_calib, vmad_eval(delta, lambda x: x.shape))

```

```

b_shock_f = linalg.broadcast_to(b_shock, vmad_eval(delta, lambda x: x.shape))
w_shear_f = linalg.broadcast_to(w_shear, vmad_eval(delta, lambda x: x.shape))

# --- Fourier Setup ---
delta_k = fastpm.r2c(delta)
K = Literal(pm.create(type='complex', value=1).apply(lambda k, v: k.normp(2,
zeromode=EPS)))
k_s_f = linalg.broadcast_to(k_s, vmad_eval(K, lambda x: x.shape))

# --- 1. Electron Density Proxy ---
n_e = (delta + 1.0 + EPS) ** mu_f

# --- 2. Virial Temperature (Screened Potential) ---
InvScreen = 1.0 / (K**2 + k_s_f**2 + EPS)
phi_k = complex_mul(delta_k, InvScreen)
T_virial_raw = fastpm.c2r(phi_k)
T_virial = unary.log(1.0 + unary.exp(T_virial_raw)) # Softplus for positivity

# --- 3. Gated Shock Temperature (Multi-Scale) ---
# Create two independent smoothing kernels
R_s_shear_f = linalg.broadcast_to(R_s_shear, vmad_eval(K, lambda x: x.shape))
R_s_shock_f = linalg.broadcast_to(R_s_shock, vmad_eval(K, lambda x: x.shape))
Smooth_shear = unary.exp(-(K * R_s_shear_f)**2)
Smooth_shock = unary.exp(-(K * R_s_shock_f)**2)

# Create two independently smoothed potential fields
phi_sm_shear_k = complex_mul(phi_k, Smooth_shear)
phi_sm_shock_k = complex_mul(phi_k, Smooth_shock)

# A. Isotropic Gradient Term (from shock-smoothed potential)
grad_sq = delta * 0.0
for d in range(pm.ndim):
    def grad_kernel(k,v,d=d): return 1j*k[d]
    Gk = Literal(pm.create(type='complex').apply(grad_kernel))
    g_k = complex_mul(phi_sm_shock_k, Gk)
    g_r = fastpm.c2r(g_k)
    grad_sq = grad_sq + g_r**2

# B. Anisotropic Tidal Shear Term (from shear-smoothed potential)
def get_hessian_comp(d1, d2):
    def h_kernel(k, v, d1=d1, d2=d2): return -k[d1] * k[d2]
    Hk = Literal(pm.create(type='complex').apply(h_kernel))
    return fastpm.c2r(complex_mul(phi_sm_shear_k, Hk))

Hxx, Hyy, Hzz = get_hessian_comp(0,0), get_hessian_comp(1,1), get_hessian_comp(2,2)
Hxy, Hxz, Hyz = get_hessian_comp(0,1), get_hessian_comp(0,2), get_hessian_comp(1,2)
Havg = (Hxx + Hyy + Hzz) / 3.0
s2 = (Hxx-Havg)**2 + (Hyy-Havg)**2 + (Hzz-Havg)**2 + 2.0*(Hxy**2+Hxz**2+Hyz**2)

# C. Compression Gate (from Inspiration)
# Emphasize shock heating in high-density (collapsing) regions
# trH = laplacian(Phi) ~ delta.
# We want a weight that scales with density/collapse.
gate = (1.0 + ReLU(delta)) ** 0.5

# Combined Kinetic Term
# T_kin ~ (1 + Gate * ((1-w)Grad^2 + w*s^2))
kin_mix = (1.0 - w_shear_f) * grad_sq + w_shear_f * s2

```

```

T_shock = (1.0 + gate * kin_mix + EPS) ** b_shock_f

# --- Final Combination ---
F = b_calib_f * n_e * T_virial * T_shock
F = ReLU(F)

else:
    F = delta

return F

def smoothing(n):
    """
    Compensated Smoothing Kernel for Residue.
    Balances weighting between large scales ( $k^{-n}$ ) and small scales (1).
    The denominator term  $(1 + 0.1 \cdot k^n)$  prevents excessive domination of large scales.
    """
    def kernel(k, v):
        kk = sum(ki ** 2 for ki in k)**0.5
        mask = kk == 0
        kk[mask] = 1.0
        # Compensated weight:  $(k^{-n} + 1) / (1 + \alpha \cdot k^n)$ 
        b = v * ((kk**(-n) + 1.0) / (1.0 + 0.1 * (kk**n)))
        b[mask] = v[mask]
        return b
    return kernel

@autooperator('param->residue')
def smoothed_residue(param, X, pm, Nstep, target, n, baryon=True):
    F = LDL(param, X, pm, Nstep, baryon=baryon)
    residue = F - target
    Filter = pm.create(type='complex', value=1).apply(smoothing(n=n))
    residuek = fastpm.r2c(residue) * Filter
    residue = fastpm.c2r(residuek)
    return residue

@autooperator('residue->loss')
def lossfunc(residue, mask, comm=MPI.COMM_WORLD, L1=True):
    residue = unary.absolute(residue)
    loss = masking(residue, mask)
    Npixel = np.sum(mask)
    loss = linalg.sum(loss) if L1 else linalg.sum(loss**2)
    loss = mpi.allreduce(loss, comm=comm)
    Npixel = mpi.allreduce(Npixel, comm=comm)
    return loss / Npixel

# EVOLVE-BLOCK-END

```

This report was automatically generated using LLM-assisted analysis.